
MongoDB on AWS
Guidelines and Best Practices

Rahul Bhartia

May 2015

Amazon Web Services – MongoDB on AWS May 2015

Page 2 of 30

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – MongoDB on AWS May 2015

Page 3 of 30

Contents

Abstract 4

Introduction 4

NoSQL on AWS 4

MongoDB: A Primer 5

Storage and Access Patterns 6

Availability and Scaling 10

Designs for Deploying MongoDB on AWS 12

High-Performance Storage 12

High Availability and Scale 15

MongoDB: Operations 20

Using MMS or Ops Manager 21

Do It Yourself 22

Network Security 26

Conclusion 29

Further Reading 29

Notes 30

Amazon Web Services – MongoDB on AWS May 2015

Page 4 of 30

Abstract
Amazon Web Services (AWS) is a flexible, cost-effective, easy-to-use cloud

computing platform.1 MongoDB is a popular NoSQL database that is widely

deployed in the AWS cloud.2 Running your own MongoDB deployment on

Amazon Elastic Cloud Compute (Amazon EC2) is a great solution for users whose

applications require high-performance operations on large datasets.

This whitepaper provides an overview of MongoDB and its implementation on

the AWS cloud platform. It also discusses best practices and implementation

characteristics such as performance, durability, and security, and focuses on AWS

features relevant to MongoDB that help ensure scalability, high availability, and

disaster recovery.

Introduction
NoSQL refers to a subset of structured storage software that is optimized for

high-performance operations on large datasets. As the name implies, querying of

these systems is not based on the SQL language—instead, each product provides

its own interface for accessing the system and its features.

One way to organize the different NoSQL products is by looking at the underlying

data model:

 Key-value stores – Data is organized as key-value relationships and

accessed by primary key.

 Graph databases – Data is organized as graph data structures and accessed

through semantic queries.

 Document databases – Data is organized as documents (e.g., JSON) and

accessed by fields within the document.

NoSQL on AWS
AWS provides an excellent platform for running many advanced data systems in

the cloud. Some of the unique characteristics of the AWS cloud provide strong

benefits for running NoSQL systems. A general understanding of these

characteristics can help you make good architecture decisions for your system.

http://aws.amazon.com/
https://www.mongodb.org/

Amazon Web Services – MongoDB on AWS May 2015

Page 5 of 30

In addition, AWS provides the following services for NoSQL and storage that do

not require direct administration, and offers usage-based pricing. Consider these

options as possible alternatives to building your own system with open source

software (OSS) or a commercial NoSQL product.

 Amazon DynamoDB is a fully managed NoSQL database service that

provides fast and predictable performance with seamless scalability.3 All

data items are stored on solid-state drives (SSDs) and are automatically

replicated across three Availability Zones in an AWS region to provide

built-in high availability and data durability. With Amazon DynamoDB,

you can offload the administrative burden of operating and scaling a

highly available distributed database cluster while paying a low variable

price for only the resources you consume.

 Amazon Simple Storage Service (Amazon S3) provides a simple web

services interface that can store and retrieve any amount of data anytime

from anywhere on the web.4 Amazon S3 gives developers access to the

same highly scalable, reliable, secure, fast, and inexpensive infrastructure

that Amazon uses to run its own global network of websites. Amazon S3

maximizes benefits of scale, and passes those benefits on to you.

MongoDB: A Primer
MongoDB is a popular NoSQL document database that provides rich features,

fast time-to-market, global scalability, and high availability, and is inexpensive to

operate.

MongoDB can be scaled within and across multiple distributed locations. As your

deployments grow in terms of data volume and throughput, MongoDB scales

easily with no downtime, and without changing your application. And as your

availability and recovery goals evolve, MongoDB lets you adapt flexibly across

data centers.

After reviewing the general features of MongoDB, we will take a look at some of

the key considerations for performance and high availability when using

MongoDB on AWS.

http://aws.amazon.com/dynamodb/
http://aws.amazon.com/s3/

Amazon Web Services – MongoDB on AWS May 2015

Page 6 of 30

Storage and Access Patterns
MongoDB version 3.0 exposes a new storage engine API, which enables the

integration of pluggable storage engines that extend MongoDB with new

capabilities and enables optimal use of specific architectures. MongoDB 3.0

includes two storage engines:

 The default MMAPv1 engine. This is an improved version of the engine

used in previous MongoDB releases, and includes collection-level

concurrency control.

 The new WiredTiger storage engine. This engine provides document-level

concurrency control and native compression. For many applications, it will

result in lower storage costs, better hardware utilization, and more

predictable performance.

To enable the WiredTiger storage engine, use the storageEngine option on the

mongod command line; for example:

mongod --storageEngine WiredTiger

Although each storage engine is optimized for different workloads, users still

leverage the same MongoDB query language, data model, scaling, security, and

operational tooling, independent of the engine they use. As a result, most of the

best practices discussed in this guide apply to both storage engines. Any

differences in recommendations between the two storage engines are noted.

Now let's take a look at the MongoDB processes that require access to disk and

their access patterns.

Data Access

In order for MongoDB to process an operation on an object, that object must

reside in memory. The MMAPv1 storage engine uses memory-mapped files,

whereas WiredTiger manages objects through its in-memory cache. When you

perform a read or write operation on an object that is not currently in memory, it

leads to a page fault (MMAPv1) or cache miss (WiredTiger) so that the object can

be read from disk and loaded into memory.

Amazon Web Services – MongoDB on AWS May 2015

Page 7 of 30

If your application’s working set is much larger than the available memory, access

requests to some objects will cause reads from disk before the operation can

complete. Such requests are often the largest driver of random I/O, especially for

databases that are larger in size than available memory. If your working set

exceeds available memory on a single server, you should consider sharding your

system across multiple servers.

You should pay attention to the read-ahead settings on your block device to see

how much data is read in such situations. Having a large setting for read-ahead is

discouraged, because it will cause the system to read more data into memory than

is necessary, and it might possibly evict other data that may be used by your

application. This is particularly true for services that limit block size, such as

Amazon Elastic Block Store (EBS) volumes, which are described later in this

paper.

Write Operations

At a high level, both storage engines write data to memory, and then periodically

synchronize the data to disk. However, the two MongoDB 3.0 storage engines

differ in their approach:

 MMAPv1 implements collection-level concurrency control with atomic in-

place updates of document values. To ensure that all modifications to a

MongoDB dataset are durably written to disk, MongoDB records all

modifications in a journal that it writes to disk more frequently than it

writes the data files. By default, data files are flushed to disk every 60

seconds. You can change this interval by using the mongod syncDelay

option.

 WiredTiger implements document-level concurrency control with support

for multiple concurrent writers and native compression. WiredTiger

rewrites the document instead of implementing in-place updates.

WiredTiger uses a write-ahead transaction log in combination with

checkpoints to ensure data persistence. By default, data is flushed to disk

every 60 seconds after the last checkpoint, or after 2 GB of data has been

written. You can change this interval by using the mongod

wiredTigerCheckpointDelaySecs option.

Amazon Web Services – MongoDB on AWS May 2015

Page 8 of 30

Journal

MongoDB uses write-ahead logging to an on-disk journal to guarantee write

operation durability. Before applying a change to the data files, MongoDB writes

the idempotent change operation to the journal. If MongoDB should terminate or

encounter an error before it can write the changes from the journal to the data

files, MongoDB can reapply the write operation and maintain a consistent state.

The journal is periodically flushed to disk, and its behavior is slightly different in

each storage engine:

 MMAPv1. The journal is flushed to disk every 100 ms by default. If

MongoDB is waiting for the journal before acknowledging the write

operation, the journal is flushed to disk every 30 ms.

 WiredTiger. Journal changes are written to disk periodically or

immediately if an operation is waiting for the journal before

acknowledging the write operation.

With MMAPv1, the journal should always be enabled because it allows the

database to recover in case of an unclean shutdown. With WiredTiger, the

append-only file system means that the transaction log is not necessary for

recovery in case of an unclean shutdown, because the data files are always valid.

Locating MongoDB's journal files and data files on separate storage arrays may

improve performance, as write operations to each file will not compete for the

same resources. Depending on the frequency of write operations, journal files can

also be stored on conventional disks due to their sequential write profile.

Basic Tips

MongoDB provides recommendations for read-ahead and other environment

settings in their production notes.5 Here's a summary of their recommendations:

Packages

 Always use 64-bit builds for production. 32-bit builds support systems

with only 2 GB of memory.

 Use MongoDB 3.0 or later. Significant feature enhancements in the 3.0

release include support for two storage engines, MMAPv1 and WiredTiger,

as discussed earlier in this paper.

http://docs.mongodb.org/master/administration/production-notes/

Amazon Web Services – MongoDB on AWS May 2015

Page 9 of 30

Concurrency

 With MongoDB 3.0, WiredTiger enforces control at the document level

while the MMAPv1 storage engine implements collection-level

concurrency control. For many applications, WiredTiger will provide

benefits in greater hardware utilization by supporting simultaneous write

access to multiple documents in a collection.

Networking

 Always run MongoDB in a trusted environment, and limit exposure by

using network rules that prevent access from all unknown machines,

systems, and networks. See the Security section of the MongoDB 3.0

manual for additional information.6

Storage

 Use XFS or Ext4. These file systems

support I/O suspend and write-cache

flushing, which is critical for multi-

disk consistent snapshots. XFS and

Ext4 also support important tuning

options to improve MongoDB

performance.

 Turn off atime and diratime when you mount the data volume. Doing so

reduces I/O overhead by disabling features that aren’t useful to MongoDB.

 Assign swap space for your system. Allocating swap space can avoid issues

with memory contention and can prevent out-of-memory conditions.

 Use a NOOP scheduler for best performance. The NOOP scheduler allows

the operating system to defer I/O scheduling to the underlying hypervisor.

Operating system

 Raise file descriptor limits. The default limit of 1024 open files on most

systems won’t work for production-scale workloads. For more

information, refer to

http://www.mongodb.org/display/DOCS/Too+Many+Open+Files.

 Disable transparent huge pages. MongoDB performs better with standard

(4096-byte) virtual memory pages.

For improved performance,

consider separating your

data, journal, and logs onto

different storage devices,

based on your application’s

access and write pattern.

http://docs.mongodb.org/master/security/
http://www.mongodb.org/display/DOCS/Too+Many+Open+Files

Amazon Web Services – MongoDB on AWS May 2015

Page 10 of 30

 Ensure that read-ahead settings for the block devices that store the

database files are appropriate. For random-access use patterns, set low

read-ahead values. A read-ahead setting of 32 (16 KB) often works well.

Availability and Scaling
The design of your MongoDB installation depends on the scale at which you want

to operate. This section provides general descriptions of various MongoDB

deployment topologies.

Standalone Instances

Mongod is the primary daemon process for the MongoDB system. It handles data

requests, manages data access, and performs background management

operations. Standalone deployments are useful for development, but should not

be used in production because they provide no automatic failover.

Replica Sets

A MongoDB replica set is a group of mongod processes that maintain multiple

copies of the data and perform automatic failover for high availability.

A replica set consists of multiple replicas. At any given time, one member acts as

the primary member and the others act as secondary members. MongoDB is

strongly consistent by default: read and write operations are issued to a primary

copy of the data. If the primary member fails for any reason (e.g., hardware

failure, network partition) one of the secondary members is automatically elected

to the primary role and begins to process all write operations.

Applications can optionally specify a read

preference to read from the nearest

secondary members, as measured by ping

distance.7 Reading from secondaries will

require additional considerations to account

for eventual consistency, but can be utilized

when low latency is more important than

consistency. Applications can also specify the

desired consistency of any single write

operation with a write concern.8

All secondary members

within a replica set do not

have to use the same storage

engine options, but it is

important to ensure that the

secondary member can keep

up with the primary

member so that it doesn’t

drift too far out of sync.

http://docs.mongodb.org/manual/core/read-preference/
http://docs.mongodb.org/manual/core/read-preference/
http://docs.mongodb.org/manual/core/write-concern/

Amazon Web Services – MongoDB on AWS May 2015

Page 11 of 30

Replica sets also support operational flexibility by providing a way to upgrade

hardware and software without requiring the database to go offline. This is an

important feature, as these types of operations can account for as much as one

third of all downtime in traditional systems.

Sharded Clusters

MongoDB provides horizontal scale-out for databases on low cost, commodity

hardware by using a technique called sharding. Sharding distributes data across

multiple partitions called shards.

Sharding allows MongoDB deployments to address the hardware limitations of a

single server, such as bottlenecks in RAM or disk I/O, without adding complexity

to the application. MongoDB automatically balances the data in the sharded

cluster as the data grows or the size of the cluster increases or decreases.

A sharded cluster consists of the following:

 A shard, which is a standalone instance or replica set that holds a subset of

a collection’s data. For production deployments, all shards should be

deployed as replica sets.

 A config server, which is a mongod process that maintains metadata about

the state of the sharded cluster. Production deployments should use three

config servers.

 A query router called mongos, which uses the shard key contained in the

query to route the query efficiently only to the shards, which have

documents matching the shard key. Applications send all queries to a

query router. Typically, in a deployment with a large number of

application servers, you would load balance across a pool of query routers.

Your cluster should manage a large quantity of data for sharding to have an

effect. Most of the time, sharding a small collection is not worth the added

complexity and overhead unless you need additional write capacity. If you have a

small dataset, a properly configured single MongoDB instance or a replica set will

usually be enough for your persistence layer needs.

Amazon Web Services – MongoDB on AWS May 2015

Page 12 of 30

Designs for Deploying MongoDB on AWS
This section discusses how you can apply MongoDB features to AWS features and

services to deploy MongoDB in the most optimal and efficient way.

High-Performance Storage
Understanding the total I/O required is key

to selecting an appropriate storage

configuration on AWS. Most of the I/O

driven by MongoDB is random. If your

working set is much larger than memory,

with random access patterns you may need

many thousands of IOPS from your storage

layer to satisfy demand.

AWS offers two broad choices to construct the storage layer of your MongoDB

infrastructure: Amazon Elastic Block Store and Amazon EC2 instance store.

Amazon Elastic Block Store (Amazon EBS)

Amazon EBS provides persistent block-level storage volumes for use with

Amazon EC2 instances in the AWS cloud. Each Amazon EBS volume is

automatically replicated within its Availability Zone to protect you from

component failure, offering high availability and durability. Amazon EBS

volumes offer the consistent and low-latency performance needed to run your

workloads. Amazon EBS volumes provide a great design for systems that require

storage performance variability.

There are two types of Amazon EBS volumes you should consider for MongoDB

deployments:

 General Purpose (SSD) volumes offer single-digit millisecond latencies,

deliver a consistent baseline performance of 3 IOPS/GB to a maximum of

10,000 IOPS, and provide up to 160 MB/s of throughput per volume.

 Provisioned IOPS (SSD) volumes offer single-digit millisecond latencies,

deliver a consistent baseline performance of up to 30 IOPS/GB to a

maximum of 20,000 IOPS, and provide up to 320 MB/s of throughput per

Note that WiredTiger

provides compression,

which will affect the sizing

of your deployment,

allowing you to scale your

storage resources more

efficiently.

Amazon Web Services – MongoDB on AWS May 2015

Page 13 of 30

volume, making it much easier to predict the expected performance of a

system configuration.

At minimum, using a single EBS volume on an Amazon EC2 instance can achieve

10,000 IOPS or 20,000 IOPS from the underlying storage, depending upon the

volume type. For best performance, use EBS-optimized instances.9 EBS-

optimized instances deliver dedicated throughput between Amazon EC2 and

Amazon EBS, with options between 500 and 4,000 megabits per second (Mbps)

depending on the instance type used.

Figure 1: Using a Single Amazon EBS Volume

To scale IOPS further beyond that offered by a single volume, you could use

multiple EBS volumes. You can choose from multiple combinations of volume

size and IOPS, but remember to optimize based on the maximum IOPS

supported by the instance.

Figure 2: Using Multiple Amazon EBS Volumes

In this configuration, you may want to attach enough volumes with combined

IOPS beyond the IOPS offered by the EBS-optimized EC2 instance. For example,

one Provisioned IOPS (SSD) volume with 16,000 IOPS or two General Purpose

(SSD) volumes with 8,ooo IOPS striped together would match the 16,000 IOPS

offered by c2.4xlarge instances.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Web Services – MongoDB on AWS May 2015

Page 14 of 30

Instances with a 10 Gbps network and enhanced networking can provide up to

48,000 IOPS and 800 MB/s of throughput to Amazon EBS volumes.10 For

example, with these instances, five General Purpose (SSD) volumes of 10,000

IOPS each can saturate the link to Amazon

EBS.

Amazon EBS also provides a feature for

backing up the data on your EBS volumes to

Amazon S3 by taking point-in-time

snapshots. For information about using the

snapshots for MongoDB backups, see the

Backup Using Amazon EBS snapshots

section of this paper.

Amazon EC2 Instance Store

Many Amazon EC2 instance types can access disk storage located on disks that

are physically attached to the host computer. This disk storage is referred to as an

instance store. If you’re using an instance store on instances that expose more

than a single volume, you can mirror the instance stores (using RAID 10) to

enhance operational durability. Remember, even though the instance stores are

mirrored, if the instance is stopped, fails, or is terminated, you’ll lose all your

data. Therefore, we strongly recommend operating MongoDB with replica sets

when using instance stores.

When using a logical volume manager (e.g., mdadm or LVM), make sure that all

metadata and data are consistent when you perform the backup (see the section

Backup - Amazon EBS Snapshots). For simplified backups to Amazon S3, you

should consider adding another secondary member that uses Amazon EBS

volumes, and this member should be configured to ensure that it never becomes a

primary member.

There are two main instance types you should consider for your MongoDB

deployments:

 I2 instances – High I/O (I2) instances are optimized to deliver tens of

thousands of low-latency, random IOPS to applications. With the

i2.8xlarge instance, you can get 365,000 read IOPS and 315,000 first-

write IOPS (4,096 byte block size) when running the Linux AMI with

MongoDB Management

Service (MMS) provides

continuous incremental

backups and point-in-time

recovery. For more

information, refer to the

MMS backup section.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html

Amazon Web Services – MongoDB on AWS May 2015

Page 15 of 30

kernel version 3.8 or later, and you can utilize all the SSD-based instance

store volumes available to the instance.

 D2 – Dense-storage (D2) instances provide an array of 24 internal SATA

drives of 2 TB each, which can be configured in a single RAID 0 array of 48

TB and provide 3.5 Gbps read and 3.1 Gbps write disk throughput with a 2

MB block size. For example, 30 d2.8xlarge instances in a 10-shard

configuration with 3 replica sets each can give you the ability to store up to

half a PB of data.

You can also cluster these instance types in a placement group. Placement groups

provide low latency and high-bandwidth connectivity between the instances

within a single Availability Zone. For more information, see Placement Groups in

the AWS documentation.11 Instances with enhanced networking inside a

placement group will provide the minimum latencies for replication due to a low-

latency, 10 Gbps network with higher performance (packets per second), and

lower jitter.

High Availability and Scale
MongoDB provides native replication capabilities for high availability and uses

automatic sharding to provide horizontal scalability.

Although you can scale vertically by using high-performance instances instead of

a replicated and sharded topology, vertically scaled instances don’t provide the

significant fault tolerance benefits that come with a replicated topology. Because

AWS has a virtually unlimited pool of resources, it is often better to scale

horizontally.

You can scale all your instances in a single location, but doing so can make your

entire cluster unavailable in the event of failure. To help deploy highly available

applications, Amazon EC2 is hosted in multiple locations worldwide. These

locations are composed of regions and Availability Zones. Each region is a

separate geographic area. Each region has multiple, isolated locations known as

Availability Zones. Each region is completely independent. Each Availability

Zone is isolated, but the Availability Zones in a region are connected through low-

latency links. The following diagram illustrates the relationship between regions

and Availability Zones.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html

Amazon Web Services – MongoDB on AWS May 2015

Page 16 of 30

Figure 3: AWS Regions and Availability Zones

The following steps and diagrams will guide you through some design choices

that can scale well to meet different workloads.

As a first step, you can separate the mongod server from the application tier. In

this setup, there’s no need for config servers or the mongos query router, because

there’s no sharding structure for your applications to navigate.

Figure 4: A Single MongoDB Instance

While the above setup will help you scale a bit, for production deployments, you

should use sharding, replica sets, or both to provide higher write throughput and

fault tolerance.

High Availability

As a next step to achieve high availability with MongoDB, you can add replica sets

and run them across separate Availability Zones (or regions). When MongoDB

detects that the primary node in the cluster has failed, it automatically performs

an election to determine which node will be the new primary.

Amazon Web Services – MongoDB on AWS May 2015

Page 17 of 30

Figure 5 shows three instances for high availability within an AWS region, but

you can use additional instances if you need greater availability guarantees or if

you want to keep copies of data near users for low-latency access.

Figure 5: High Availability Within an AWS Region

Use an odd number of replicas in a MongoDB replica set so that a quorum can be

reached if required. When using an even number of instances in a replica set, you

should use an arbiter to ensure that a quorum is reached. Arbiters act as voting

members of the replica set but do not store any data. A micro instance is a great

candidate to host an arbiter node.

You can also set the priority for elections to affect the selection of primaries, for

fine-grained control of where primaries will be located. For example, when you

deploy a replica member to another region, consider configuring that replica with

a low priority as illustrated in Figure 6. To prevent the member in another region

from being elected primary, set the member’s priority to 0 (zero).

Figure 6: High Availability Across AWS Regions

Amazon Web Services – MongoDB on AWS May 2015

Page 18 of 30

You can use this pattern to replicate data in multiple regions, so the data can be

accessed with low latency in each region. Read operations can be issued with a

read preference mode of nearest, ensuring that the data is served from the

closest region to the user, based on ping distance. All read preference modes

except primary might return stale data, because secondary nodes replicate

operations from the primary node asynchronously. Ensure that your application

can tolerate stale data if you choose to use a non-primary mode.

Scaling

For scaling, you can create a sharded cluster of replica sets. In Figure 7, a cluster

with two shards is deployed across multiple Availability Zones in the same AWS

region. When deploying the members of shards across regions, configure the

members with a lower priority to ensure that members in the secondary region

become primary members only in the case of failure across the primary region.

Figure 7: Scaling Within an AWS Region with High Availability

Amazon Web Services – MongoDB on AWS May 2015

Page 19 of 30

By using multiple regions, you can also deploy MongoDB in a configuration that

provides fault tolerance and tolerates network partitions without data loss when

using the Majority write concern. In this deployment, two regions are

configured with equal numbers of replica set members, and a third region

contains arbiters or an additional hidden replica member.

Figure 8: Scaling Across AWS Regions

MongoDB includes a number of features that allow segregation of operations by

location or geographical groupings. MongoDB’s tag aware sharding supports

tagging a range of shard key values to associate that range with a shard or group

of shards.12 Those shards receive all inserts within the tagged range, which

ensures that the most relevant data resides on shards that are geographically

closest to the application servers, allowing for segmentation of operations across

regions.

In a location-aware deployment, each MongoDB shard is localized to a specific

region. As illustrated in Figure 9, in this deployment each region has a primary

http://docs.mongodb.org/manual/core/tag-aware-sharding/

Amazon Web Services – MongoDB on AWS May 2015

Page 20 of 30

replica member for its shard and also maintains secondary replica members in

another Availability Zone in the same region and in another region. Applications

can perform local write operations for their data, and they can also perform local

read operations for the data replicated from the other region.

Figure 9: Scaling Across Regions with Location Awareness

MongoDB: Operations
Now that we have looked into the availability and performance aspects, let’s take

a look at the operational aspects (deployment, monitoring and maintenance, and

network security) of your MongoDB cluster on AWS.

There are two popular approaches to managing MongoDB deployments:

 Using MongoDB Management Service (MMS), which is a cloud service, or

Ops Manager, which is management software you can deploy, to provide

monitoring, backup, and automation of MongoDB instances.

Amazon Web Services – MongoDB on AWS May 2015

Page 21 of 30

 Using a combination of tools and services such as AWS CloudFormation

and Amazon CloudWatch along with other automation and monitoring

tools.

The following sections discuss these two options as they relate to the scenarios

outlined in previous sections.

Using MMS or Ops Manager
MMS is a cloud service for managing MongoDB. By using MMS, you can deploy,

monitor, back up, and scale MongoDB through the MMS interface or via an API

call. MMS communicates with your infrastructure through agents installed on

each of your servers, and coordinates critical operations across the servers in

your MongoDB deployment.

MongoDB subscribers can also install and run Ops Manager on AWS to manage,

monitor, and back up their MongoDB deployments. Ops Manager is similar to

MMS. It provides monitoring and backup agents, which assist with these

operations.

You can deploy, monitor, back up, and scale MongoDB via the MMS or Ops

Manager user interface directly, or invoke the RESTful APIs from existing

enterprise tools, including popular monitoring and orchestration frameworks.

The next sections introduce the three key features of MMS—deployment,

monitoring, and backup—very briefly. For more information, see the MMS

documentation13 and Ops Manager documentation14 on the MongoDB website.

Deployment

With MMS or Ops Manager, you can deploy MongoDB replica sets, sharded

clusters, and standalone instances quickly. They work by communicating with an

automation agent installed on each server. The automation agent contacts MMS

or Ops Manager and gets instructions on the goal state of your MongoDB

deployment.

Users can authorize MMS via cross-account AWS Identity and Access

Management (IAM) roles to allow MMS to provision Amazon EC2 instances on

https://docs.mms.mongodb.com/
https://docs.mms.mongodb.com/
https://docs.opsmanager.mongodb.com/

Amazon Web Services – MongoDB on AWS May 2015

Page 22 of 30

AWS and start the MMS automation agent. Hence, deploying MongoDB on AWS

is even simpler when you use MMS.

In addition to getting support for initial deployment, you can also dynamically

resize capacity by adding shards and replica set members.

Monitoring

MMS and Ops Manager monitoring provides real-time reporting, visualization,

and alerting on key database and hardware indicators. A lightweight Monitoring

Agent runs within your MongoDB deployment and collects statistics from the

nodes in your MongoDB deployment. The agent transmits database statistics

back to MMS or Ops Manager to provide real-time reporting. You can set alerts

on the indicators you choose.

Backup

MMS and Ops Manager are the only solutions that offer point-in-time backups of

replica sets and cluster-wide snapshots of sharded clusters. A lightweight Backup

Agent runs within your infrastructure and backs up data from the MongoDB

processes you have specified.

The Backup Agent conducts an initial sync and then tails the operation log

(oplog) to provide a continuous backup. Because the Backup Agent only reads the

oplog, it minimizes the performance impact on the cluster and is similar to

adding an additional replica to a replica set.

These backups are maintained continuously, just a few seconds behind the

operational system. If the MongoDB cluster experiences a failure, the most recent

backup is only moments behind, minimizing exposure to data loss.

Do It Yourself
Deployment – AWS MongoDB Quick Start

AWS Quick Start reference deployments help you deploy fully functional

enterprise software on the AWS cloud, following AWS best practices for security

and availability.15

The MongoDB Quick Start automatically launches and runs a MongoDB cluster

of up to 13 nodes on AWS. It automates the deployment through an AWS

http://docs.mongodb.org/manual/core/replica-set-oplog/
http://aws.amazon.com/quickstart/

Amazon Web Services – MongoDB on AWS May 2015

Page 23 of 30

CloudFormation template, and enables you to launch the MongoDB cluster either

into your own Amazon Virtual Private Cloud (Amazon VPC) or into a newly

created Amazon VPC. Customization options include the MongoDB version you

want to deploy (version 2.6 or 3.0), the number of replicas you want to launch to

ensure high availability (1-3 replicas), and the number of shards you want to use

to improve throughput and performance (0-3 shards). The Quick Start also

provides micro-sharding options and lets you customize storage types and sizes.

The MongoDB Quick Start takes approximately 15 minutes to deploy. You pay

only for the AWS compute and storage resources you use—there is no additional

cost for running the Quick Start.

For more information about the MongoDB architecture and implementation, and

to launch the Quick Start, see the Quick Start deployment guide.16

Monitoring – Amazon CloudWatch

Amazon CloudWatch is a monitoring service for AWS cloud resources and

applications you run on AWS. You can use Amazon CloudWatch to collect and

track metrics, to collect and monitor log files, and to set alarms. Amazon

CloudWatch can send an alarm by SMS or email when user-defined thresholds

are reached on individual AWS services. For example, you can set an alarm to

warn of excessive storage throughput.

CloudWatch metrics can also be used to drive policies for Auto Scaling groups to

automatically scale your compute resources up or down based on your custom

metrics, as shown in Figure 10.17

https://s3.amazonaws.com/quickstart-reference/mongodb/latest/doc/MongoDB_on_the_AWS_Cloud.pdf
http://aws.amazon.com/documentation/autoscaling/

Amazon Web Services – MongoDB on AWS May 2015

Page 24 of 30

Figure 10: Monitoring Using Amazon CloudWatch

Alternatively, you can write a custom metric and submit it to Amazon

CloudWatch for monitoring. For example, you can write a custom metric to check

for current free memory on your instances, and to set alarms or trigger automatic

responses when those measures exceed a threshold that you specify.

To publish metrics regarding MongoDB into CloudWatch you should use IAM

roles to grant permissions to your instances. Here’s an example IAM policy you

can use:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "",

 "Effect": "Allow",

 "Action": [

 "cloudwatch:GetMetricStatistics",

 "cloudwatch:ListMetrics",

 "cloudwatch:PutMetricData",

 "ec2:DescribeTags"

],

 "Resource": "*"

 }

Amazon Web Services – MongoDB on AWS May 2015

Page 25 of 30

]

}

You can then use the AWS command line interface (AWS CLI) to publish any

metrics directly into Cloudwatch. The following example demonstrates how to

publish a simple metric named ResidentMemory into Cloudwatch with a value of

32 GB.

aws cloudwatch put-metric-data --metric-name ResidentMemory

--namespace MongoDB --timestamp 2014-01-01T00:00:00Z --

value 32 --unit Gigabytes

The monitoring section of the MongoDB manual also provides a good overview of

the monitoring and reporting utilities available.18

Backup – Amazon EBS Snapshots

You can back up the data on your EBS volumes to Amazon S3 by taking point-in-

time snapshots. Snapshots are incremental backups, which means that only the

blocks on the device that have changed after your most recent snapshot are

saved. When you delete a snapshot, only the data exclusive to that snapshot is

removed. Active snapshots contain all the information needed to restore your

data (from the time the snapshot was taken) to a new EBS volume.

Taking a consistent Amazon EBS snapshot also depends upon the capabilities of a

specific operating system or file system. An example of a file system that can flush

its data for a consistent backup is XFS (see the xfs_freeze command19). When

using a logical volume manager such as mdadm or LVM, you should perform the

backup from the volume manager layer rather than the underlying devices. This

ensures that all metadata remains consistent and that the various subcomponent

volumes are coherent. You can take a number of approaches to accomplish

consistency. For example, you can use the script made available by Alestic.com at

https://github.com/alestic/ec2-consistent-snapshot.

To get a correct snapshot of a running mongod process:

http://docs.mongodb.org/manual/administration/monitoring
http://linux.die.net/man/8/xfs_freeze
https://github.com/alestic/ec2-consistent-snapshot

Amazon Web Services – MongoDB on AWS May 2015

Page 26 of 30

 You must have journaling enabled. Otherwise, there is no guarantee that

the snapshot will be consistent or valid.

 The journal should reside on the same logical volume as the data files, or

you must use the MongoDB db.fsyncLock() method to capture a valid

snapshot of your data.

To get a consistent snapshot of a sharded system, you must disable the balancer

and capture a snapshot from every shard and config server at approximately the

same moment in time, using the method outlined previously in this section.

For more information about backup and recovery of MongoDB deployments, see

the Backup and Recovery section of the MongoDB manual.20

Network Security
The following sections provide a brief overview of using network security with

MongoDB on AWS.

Amazon Virtual Private Cloud (Amazon VPC)

Amazon VPC enables you to create an isolated portion of the AWS cloud and

launch Amazon EC2 instances that have private (RFC 1918) addresses in the

range of your choice (e.g., 10.0.0.0/16). You can define subnets within your

Amazon VPC, grouping similar kinds of instances based on IP address range, and

then set up routing and security to control the flow of traffic in and out of the

instances and subnets. If a subnet's traffic is routed to an Internet gateway, the

subnet is known as a public subnet; otherwise, it’s called a private subnet.

Deploying your MongoDB cluster into an Amazon VPC with a private subnet and

configuring your security group to permit ingress over the appropriate TCP ports

builds another layer of network security. Like any network service, these ports

should be opened conservatively; for example, open them only to your corporate

office (over an IPsec VPN tunnel) or to other authenticated and authorized

machines. The following table shows default TCP port numbers for MongoDB

processes.

http://docs.mongodb.org/manual/administration/backup/

Amazon Web Services – MongoDB on AWS May 2015

Page 27 of 30

A common approach is to create a MongoDB

security group that contains the nodes of

your cluster. To ensure that only your app

servers can connect to your MongoDB

instances, add a rule in your MongoDB

security group with the source field set to the

security group name that contains your app

servers, and the port set to 27017.

Deploying Across Availability Zones

You can create an Amazon VPC that spans multiple Availability Zones, but each

subnet must reside entirely within one Availability Zone and cannot span zones.

To deploy MongoDB across separate Availability Zones, you should create one

Amazon VPC with private subnets for each zone. A common security group can

be used to allow the instances across the subnet to communicate.

Figure 11: Deploying MongoDB in an Amazon VPC

Process Port

27017 The default port for mongod and mongos instances. You can change this port with the

port option in a configuration file or --port runtime operation.

27018 The default port when running with the --shardsvr runtime operation or the shardsvr

value for the clusterRole setting in a configuration file.

27019 The default port when running with the --configsvr runtime operation or the

configsvr value for the clusterRole setting in a configuration file.

28017 The default port for the web status page. This page is always accessible at a port

number that is 1000 greater than the port used by mongod.

Ensure that the HTTP status

interface, the REST API, and

the JSON API are all

disabled in production

environments to prevent

potential data exposure and

vulnerability to attackers.

Amazon Web Services – MongoDB on AWS May 2015

Page 28 of 30

Deploying Across Regions

For MongoDB deployments that span regions, you would need to create an

Amazon VPC in each region and allow communication on ports listed via security

groups. Security groups are defined within the scope of an Amazon VPC, so you

would need to use multiple security groups to secure access within and across

regions.

Figure 12: Deploying MongoDB Across Regions

In this deployment, you should also secure the network communications between

regions by using one of the following methods:

 Secure IPsec tunnel to connect multiple Amazon VPCs into a larger virtual

private network that allows instances in each Amazon VPC to seamlessly

connect to each other using private IP addresses. For more information,

see the article Connecting Multiple VPCs with EC2 Instances (IPSec) on

the AWS website.21

 SSL to encrypt MongoDB’s entire network traffic and allow instances to

connect to each other using public IP addresses. For more information, see

Configure mongod and mongos for SSL in the MongoDB documentation.22

https://aws.amazon.com/articles/5472675506466066
http://docs.mongodb.org/manual/tutorial/configure-ssl/

Amazon Web Services – MongoDB on AWS May 2015

Page 29 of 30

Conclusion
The AWS cloud provides a unique platform for running NoSQL applications,

including MongoDB. With capacities that can meet dynamic needs, costs based

on use, and easy integration with other AWS products such as Amazon

CloudWatch, AWS CloudFormation, and Amazon EBS, the AWS cloud enables

you to run a variety of NoSQL applications without having to manage the

hardware yourself. MongoDB, in combination with AWS, provides a robust

platform for developing scalable, high-performance applications.

Further Reading
For additional help, please consult the following sources:

 Amazon EC2 FAQ

 Amazon EBS Overview

 Amazon VPC Documentation

 AWS Security Center

 Security section of the MongoDB manual

 Production Notes section of the MongoDB manual

 MongoDB MMS documentation

 MongoDB Architecture Guide

 Performance Best Practices for MongoDB

 MongoDB Multi-Data Center Deployments

http://aws.amazon.com/ec2/faqs
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://aws.amazon.com/documentation/vpc/
http://aws.amazon.com/security/
http://docs.mongodb.org/manual/security/
http://docs.mongodb.org/master/administration/production-notes/
https://docs.mms.mongodb.com/
http://www.mongodb.com/lp/white-paper/architecture-guide
http://www.mongodb.com/lp/white-paper/performance-best-practices
http://www.mongodb.com/lp/white-paper/multi-dc

Amazon Web Services – MongoDB on AWS May 2015

Page 30 of 30

Notes

1 http://aws.amazon.com

2 https://www.mongodb.org/

3 http://aws.amazon.com/dynamodb/

4 http://aws.amazon.com/s3/

5 http://docs.mongodb.org/master/administration/production-notes/

6 http://docs.mongodb.org/master/security/

7 http://docs.mongodb.org/manual/core/read-preference/

8 http://docs.mongodb.org/manual/core/write-concern/

9 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

10 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-

networking.html

11 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-

groups.html

12 http://docs.mongodb.org/manual/core/tag-aware-sharding/

13 https://docs.mms.mongodb.com/

14 https://docs.opsmanager.mongodb.com/

15 http://aws.amazon.com/quickstart/

16 https://s3.amazonaws.com/quickstart-

reference/mongodb/latest/doc/MongoDB_on_the_AWS_Cloud.pdf

17 http://aws.amazon.com/documentation/autoscaling/

18 http://docs.mongodb.org/manual/administration/monitoring

19 http://linux.die.net/man/8/xfs_freeze

20 http://docs.mongodb.org/manual/administration/backup/

21 https://aws.amazon.com/articles/5472675506466066

22 http://docs.mongodb.org/manual/tutorial/configure-ssl/

http://aws.amazon.com/
https://www.mongodb.org/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/s3/
http://docs.mongodb.org/master/administration/production-notes/
http://docs.mongodb.org/master/security/
http://docs.mongodb.org/manual/core/read-preference/
http://docs.mongodb.org/manual/core/write-concern/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.mongodb.org/manual/core/tag-aware-sharding/
https://docs.mms.mongodb.com/
https://docs.opsmanager.mongodb.com/
http://aws.amazon.com/quickstart/
https://s3.amazonaws.com/quickstart-reference/mongodb/latest/doc/MongoDB_on_the_AWS_Cloud.pdf
https://s3.amazonaws.com/quickstart-reference/mongodb/latest/doc/MongoDB_on_the_AWS_Cloud.pdf
http://aws.amazon.com/documentation/autoscaling/
http://docs.mongodb.org/manual/administration/monitoring
http://linux.die.net/man/8/xfs_freeze
http://docs.mongodb.org/manual/administration/backup/
https://aws.amazon.com/articles/5472675506466066
http://docs.mongodb.org/manual/tutorial/configure-ssl/

