
Amazon Web Services –Migration Scenarios: Batch Processing October 2010

Page 1 of 5

Migration Scenario: Migrating Batch Processes to the AWS Cloud

Figure 1: Company B Use case (Digital Asset Management System)

Use Case

Publishing Company B leverages a Digital Asset Management System (DAM) to manage digital assets such as documents
and other types of media files. The DAM System is an end-to-end digital supply chain that processes, encodes, catalogs,
stores and manages digital assets, distributes these assets to creative groups within various departments of the
company and publishes them after encoding in different formats for different devices. See Figure 1 for the company’s
current digital pipeline.

Each night a batch process pumps in approximately 300 jobs to the processing pipeline, each taking an average of 1 hour
on a single server to process. The system cannot scale more than 300 jobs a night due to the limited server capacity.
During the day, developers and system administrators maintain the system by performing upgrades, applying patches
and completing routine maintenance. System administrators often spend their time adding more storage capacity,
replacing the “dead” drives, and “scrubbing” the old drives to ensure that proprietary data does not fall in to the wrong
hands.

Maintaining IT infrastructure was not the core competency of the company, and they felt that reducing their IT footprint
would free up resources to focus on what they were best at. The company was desperately looking to reduce the transit
time through the pipeline (publish digital content more quickly) and focus on expanding its offering to new channels
such as Web and mobile publishing.

Application Architecture

The batch processing and storage components were the main components of the DAM system. The batch processing
infrastructure was hosted on-premise and consisted of 30 medium servers for transcoding and watermarking along with
5 high-end servers for encrypting of digital rights management (DRM). The scheduling and monitoring components of
the processing pipeline would queue the jobs in a database and kept track of job status.

Distribute Manage Store Process Ingest Produce

Asset
Creation

Data
Ingestor

Transcoder

Encoder Asset Store Catalog Publisher

Metadata
Ingestor

(Manual)

Indexer Metadata
Store

Search

Amazon Web Services –Migration Scenarios: Batch Processing October 2010

Page 2 of 5

Figure 2 illustrates how the company leveraged the
scheduler across the transcoder and encoder farm of
servers. All the business logic was contained in C++
libraries with proprietary licensed software for
transcoding, encoding, and encrypting.

The storage system used a standard Storage Area
Network (SAN) with fixed capacity. All the digital
assets (raw and processed) were stored in the asset
store. An internal website kept track of the process
while the reporting application provides reports and
metadata to other components for the DAM system.

Motivation for Migration

Company B was in need of a solution that would enable them to scale the Batch processing system without having to
incur the capital expenditure of buying new hardware and hiring additional personnel to physically manage the servers.
The current batch processing system could not scale to address the growing demand due to limited server capacity. Due
to the company’s infrastructure constraints and lack of automation, system administrators wasted a lot of time doing
repetitive tasks such as prepping the servers and fixing failed hardware. Maintenance of the equipment was a major
bottleneck and loading down the business, impeding growth and introducing inefficiencies.

Company B therefore decided to leverage the AWS cloud to address their growing pains, while continuing to keep the
overall cost of infrastructure within their budget.

Migration Plan, Strategy, & Execution Steps

Cloud Assessment
The team assessed the different components of the DAM system and determined that the immediate candidates for the
cloud were the ‘processing and the storage pipelines’ as those areas needed to be scaled out immediately to meet the
growing demand. The team identified some new ways to improve their existing software development and system
administration life cycle through automation. During financial assessment, they analyzed their past maintenance
contracts, hardware configurations, storage size and used the Simple Monthly Calculator and concluded that the
equivalent system in the cloud would be over 30% less costly to run.

During technical and functional assessment, it appeared that the main engines could easily be moved to Amazon EC2.
However, tools and scripts might need to be created to smooth the migration process. The company decided to
leverage its existing resource management tools - a website used to manage digital assets and an internal monitoring
site used for managing the processing pipeline and reporting. They decided to store all the digital assets in Amazon S3
and the corresponding metadata in Amazon SimpleDB. They worked with the licensing vendors and confirmed that their
DRM license was valid in the Amazon EC2 environment. The team prepared a migration roadmap in which the
development team would run the systems in parallel for a month (co-existence phase) then switch jobs to new system
after thorough testing and turn off the old system.

Figure 2: Architecture of processing pipeline (before migration)

http://aws.amazon.com/calculator

Amazon Web Services –Migration Scenarios: Batch Processing October 2010

Page 3 of 5

Proof of Concept
The team at Company B realized that they had several unknowns within their plan, mainly performance and latency of
the AWS cloud and determining the right EC2 instance type(s) for their particular workload. Therefore, they decided to
conduct a small proof of concept that would help them understand how their solution would perform in the cloud.

In doing so, they provisioned 3 Extra Large Amazon EC2 instances (for the transcoder and encoder components),
installed the relevant libraries and manually injected test jobs to examine the performance and latency of AWS. The
team was able to install and provision the entire stack on single Amazon EC2 instance. They concluded the performance
and latency to be satisfactory. Additional optimizations could be done later. The benefits of elasticity and not having to
manage the hardware were the biggest driving factors.

The proof of concept was helpful in letting the team test their existing software in the cloud, gave them additional
confidence in AWS, and also helped the team identify other components of the DAM System that they would move to
AWS.

Data Migration
Data Migration phase involved moving all the existing digital assets and associated metadata of the digital assets to the
cloud.

The team was able to collate several catalogs from their SAN into categories and upload most of the assets to Amazon
S3 in batches. They leveraged the AWS SDK for Java to upload the assets concurrently and AWS Management Console to
verify. For some digital assets, they encrypted the assets prior to uploading them in the cloud using a commercially
available encryption software package. To maximize the upload throughput into Amazon S3, the team used multiple
threads in parallel across a partitioned set of Amazon S3 buckets. For one particular catalog that could not be imported
over the Internet due to its size in the time frame the company required, the Amazon Import/Export Service was used.
The service allowed the catalog to be shipped to AWS on a USB 2.0 hard drive and loaded into Amazon S3. The entire
migration process took just a few weeks.

For metadata (name, authors etc.) associated to the digital assets, the team decided to get rid of their internal relational
database and leverage Amazon SimpleDB. Metadata of each asset of a given catalog was stored in an Amazon SimpleDB
domain. The team uploaded all the metadata multi-threaded BatchPut requests within a week.

Application Migration
The company decided to implement the “Forklift Migration Strategy” and moved most of the components and their
dependencies at once. Custom Amazon Machine Images (AMIs) were built for the Transcoder and Encoder engines, so
that when additional capacity was required for these components, the team could simply use the pre-built AMIs
manually. Some of the scheduler components were replaced by Amazon SQS queues (input, output), which required
refactoring and modification of a few parts of the code. At this stage, major components of the processing pipeline were
moved to the cloud and tested using data stored on Amazon S3. The health of the instances was monitored and
managed using the AWS Management Console. After end-to-end testing of the DAM System for a few weeks (running in
parallel with the mainline), Company B decided to switch to the cloud. See Figure 3 for a picture of the final architecture
after migration.

In the process of moving the application, the team also modernized some of their IT assets. They built a load testing
framework consisting of various Amazon EC2 instances to help analyze performance of cloud applications and set
appropriate expectations for how to handle growth. The team also built a key management solution to manage and
rotate all the keys used for encryption of digital assets.

Amazon Web Services –Migration Scenarios: Batch Processing October 2010

Page 4 of 5

Figure 3: Company B Batch Processing System (After Migration)

Leveraging the Cloud
In order to achieve maximum flexibility and reap the benefits of elasticity, Company B’s development team decided to
leverage some of the advanced features of the cloud. They bootstrapped each instance in the system such that an
instance could be stopped and restarted from an AMI and resume the state. An Auto Scaling Group was created to
automatically scale the number of instances up and down based on system load. Each instance played a distinct role in
the system and was self-discoverable on boot. Each instance knows what configuration to pull down based on user data
passed to it at launch e.g. For example, an instance was passed “Transcoder” string at launch. Transcoder instance
dynamically self-discovers itself on boot, grabs the appropriate apps, installs the necessary apps and patches
automatically, and configures itself to join the auto-scaling group cluster on-demand. The overall system was now not
only scalable elastically but also highly available in an event of any failure.

Overall security of the system was also hardened by a variety of means. For example, each production instance is
launched with a strict security group which restricts access to other IP addresses and only certain users have access to
source files of digital assets in the cloud.

Optimization
Once deployed, there were a number of ways the team decided to optimize their deployment in the cloud. Firstly, for
higher utilization, they ran some analysis and determined that rather than having a fleet of 30 servers running regardless
of load, the new system would expand and contract the fleet as needed to ensure maximum utilization of running
servers. The team was also able to fine tune the configuration and processes because they were no longer dependent on
the hardware.

Secondly, the Company B team was able to achieve higher performance by caching frequently accessed digital assets
(popular documents, videos) by implementing a memcached cluster running on a separate cluster of Amazon EC2
instances. These two optimizations reduced the system management workload for the team and also helped reduce
costs.

Amazon Web Services –Migration Scenarios: Batch Processing October 2010

Page 5 of 5

Conclusion

The final DAM System consisted of components that were completely hosted in the AWS cloud. The entire processing
system is now highly scalable because it is using highly scalable components (Amazon S3, Amazon SQS, Amazon
SimpleDB). The system is elastic and auto-scalable because the resources can now be provisioned and decommissioned
on-demand with just a few clicks (Amazon EC2). The monitoring website monitors and manages capacity – the new
dynamic cloud of transcoder and encoder Servers. Amazon S3 and Amazon SimpleDB conceptually provided infinite
storage capacity and as such, the asset and metadata stores will never run out of capacity which is one less thing for
their System Administrators to worry about. Developer productivity was increased due to automation and they are now
able to spend more time developing features and upgrades. Overall, Company B’s business is able to address the
growing demand and publish the digital assets in record time.

